Free Professional Development

Or

Author:
Kate Sidlo

By the end of this tutorial students will be able to convert from standard form to factored form, factored form to standard form, and vertex form to standard form.

Tutorial

1) Write title at the top of the page

2) Draw Cornell line

3) Write all questions & answers

4) Write all examples

**CONVERT**: To change the form of, but keep equal.

**DISCRIMINANT**: The part of the quadratic formula under the square root (b^{2} - 4ac). Tells the number of roots.

**FACTORED FORM**: Any quadratic equation in the form y = (x - a)(x - b)

**FACTORING**: To break up terms into smaller like terms (for this unit, to go from standard to factored form)

**LINE OF SYMMETRY**: The vertical line through the vertex, splits parabola into two mirror-image pieces

**QUADRATIC EQUATION**: A polynomial with a highest term of x^{2}

**QUADRATIC FORMULA:** Formula solves for the roots of any standard form quadratic equation

**PARABOLA**: A graph of a quadratic equation

**PERFECT SQUARE**: A number that is square of another number (Ex: 9 is a perfect square, 9 = 3*3)

**POLYNOMIAL**: Any finite set of terms with positive exponents being added, subtracted, or multiplied

**ROOTS/ZEROS**: The point or points where a parabola intersects the x-axis.

**STANDARD** **FORM**: Any quadratic equation in the form: y = ax^{2} + bx + c

**VERTEX**: The point on the graph where the parabola changes direction from positive to negative or negative to positive

**VERTEX** **FORM**: An exponential equation in the form y = (x - h)^{2} + k