Adding and Subtracting Functions

by Sophia

WHAT'S COVERED

In this lesson, you will learn how to add or subtract two functions. Specifically, this lesson will cover:

1. Adding Two Functions

Suppose we were given two functions $f(x)$ and $g(x)$ and asked to add them together. Because both of these functions are given in terms of the variable x (remember that $f(x)$ means " x is an argument of the function f^{\prime}) we can combine the functions together by adding the like terms in each.
\rightarrow EXAMPLE Suppose $f(x)=2 x^{2}-x+5$ and $g(x)=x^{2}-5 x+1$. If we wanted to find $f(x)+g(x)$, we simply do the following:

$$
\begin{aligned}
f(x)+g(x)=\left(2 x^{2}-x+5\right)+\left(x^{2}-5 x+1\right) & \text { Group like terms } \\
f(x)+g(x)=2 x^{2}+x^{2}-x-5 x+5+1 & \text { Combine like terms } \\
f(x)+g(x)=3 x^{2}-6 x+6 & \text { Our solution }
\end{aligned}
$$

\square HINT

When trying to add two functions defined by the same variable often times you will see the notation $(f+g)(x)$, which just means $f(x)+g(x)$.
Sometimes we may be asked to evaluate two functions for different values first and then add the result.
\rightarrow EXAMPLE Suppose $f(x)=2 x-1$ and $g(x)=3 x$. Find the result of $f(2)+g(1)$. In cases like this, since the value of x is different, we first need to evaluate each function of the given value and then add the final results, as shown below:

$$
\begin{aligned}
f(2)+g(1) & \text { First evaluate } f(2) \\
f(2)=2(2)-1=3 & \text { Now evaluate } g(1) \\
g(1)=3(1)=3 & \text { Add } f(2) \text { and } g(1) \text { together } \\
f(2)+g(1)=3+3 & \text { Simplify } \\
& \text { Our solution }
\end{aligned}
$$

2. Subtracting Two Functions

When subtracting two functions we follow the same rules outlined above for addition only this time we have a negative sign between the two functions.
\rightarrow EXAMPLE Suppose we had the functions $f(x)=x-1$ and $g(x)=x^{3}-2 x+1$ and asked to find $f(x)-g(x)$ we would need to do the following:

$$
\begin{aligned}
f(x)-g(x)=(x-1)-\left(x^{3}-2 x+1\right) & \text { Subtract functions by distributing the negative } \\
f(x)-g(x)=x-1-x^{3}+2 x-1 & \text { Group like terms } \\
f(x)-g(x)=-x^{3}+x+2 x-1-1 & \text { Combine like terms } \\
f(x)-g(x)=-x^{3}+3 x-2 & \text { Our solution }
\end{aligned}
$$

HINT

Always remember to distribute the negative when subtracting functions, otherwise your calculation will be incorrect.
\rightarrow EXAMPLE Find $f(3)-g(3)$ for the functions $f(x)=x-1$ and $g(x)=x^{3}-2 x+1$.

We can use the same method we did above since both functions are being evaluated for the same value of x and both are in terms of x. We can use the solution in the last step of the above example, $f(x)-g(x)=-x^{3}+3 x-2$, and simply substitute 3 for x and solve evaluate.

$$
\begin{aligned}
f(x)-g(x)=-x^{3}+3 x-2 & \text { Substitute } 3 \text { in for } x \\
f(3)-g(3)=-\left(3^{3}\right)+3(3)-2 & \text { Evaluate terms } \\
f(3)-g(3)=-27+9-2 & \text { Simplify } \\
f(3)-g(3)=-20 & \text { Our solution }
\end{aligned}
$$

We could also evaluate each function of the given value and then subtract the final results, as shown below:

$$
\begin{aligned}
f(x)=x-1 & \\
g(x)=x^{3}-2 x+1 & \text { First evaluate } f(3) \\
f(3)=3-1=2 & \text { Then evaluate } g(3) \\
g(3)=3^{3}-2(3)+1=27-6+1=22 & \text { Subtract } f(3) \text { and } g(3) \\
f(3)-g(3)=2-22 & \text { Simplify } \\
f(3)-g(3)=-20 & \text { Our solution }
\end{aligned}
$$

When trying to subtract two functions defined by the same variable often times you will see the notation $(f-g)(x)$, which just means $f(x)-g(x)$.
Keep in mind that if $f(x)$ is defined using different variables or for different values and you are asked to find $f(x)-g(x)$, you first need to evaluate each function for the given value of its variable separately and then subtract the final results.
(

SUMMARY

When adding or subtracting two functions, evaluate each function separately and combine the values for each function. For a given value a in the domain of $f(x)$ and $g(x), f(a)+g(a)$ equals $(f+g)(a)$ and $f(a)-g(a)$ equals $(f-g)(a)$.

Source: ADAPTED FROM "BEGINNING AND INTERMEDIATE ALGEBRA" BY TYLER WALLACE, AN OPEN SOURCE TEXTBOOK AVAILABLE AT www.wallace.ccfaculty.org/book/book.html. License: Creative Commons Attribution 3.0 Unported License

