

Applying the Properties of Radicals

by Sophia

1. Properties of Radicals

There are several properties of radicals we can apply to simplify expressions involving radicals. The following properties are generally true whenever n is greater than 1, and a and b are both positive real numbers:

FORMULA TO KNOW

Properties of Radicals $\sqrt[n]{a^n} = a_{and} (\sqrt[n]{a})^n = a$ Product Property: $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Quotient Property: $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ Fractional Exponents: $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

2. Cautions when Apply the Properties

Avoid these common errors when applying properties of radicals:

• The properties of radicals only apply to factors; they do not apply to terms. For example, we can use the product property of radicals to break $\sqrt{15}$ into two radicals $\sqrt{5} \cdot \sqrt{3}$ because $5 \cdot 3 = 15$. However, we cannot

break $\sqrt{8}$ into $\sqrt{5} + \sqrt{3}$.

- We can only bring an exponent outside of a radical if it applies to everything underneath the radical. For example, we can rewrite $\sqrt[3]{x^2}$ as $(\sqrt[3]{x})^2$ because the exponent of 2 applied to everything underneath the radical. However, $\sqrt[3]{16x^2} \neq (\sqrt[3]{16x})^2$ This is because the exponent of 2 applies only to the *x*, not the 16. (We could rewrite the expression as $(\sqrt[3]{4x})^2$ because $16 = 4^2$.)
- Taking the odd-root of a negative number leads to a real number solution, because a negative value raised to an odd exponent is negative. However, taking the even-root of a negative value leads to a non-real solution, because a negative value raised to an even exponent is never negative.

3. Applying the Properties of Radicals

When we recognize products, quotients, and powers with radicals, we can apply the properties of radicals to simplify the expression.

$\sqrt[3]{27xy^3}$	Use Product Property of Radicals
$\sqrt[3]{27} \cdot \sqrt[3]{x} \cdot \sqrt[3]{xy}$	Evaluate: $\sqrt[3]{27} = 3$, $\sqrt[3]{y^3} = y$
$3 \cdot \sqrt[3]{x} \cdot y$	Simplify
$3y\sqrt[3]{x}$	Our Solution
A EXAMPLE	
$\frac{\sqrt[3]{x^2y}}{\sqrt[3]{8xy^2}}$	Use Quotient Property of Radicals
$\sqrt[3]{\frac{x^2y}{8xy^2}}$	One factor of x cancels; one factor of y cancels
$\sqrt[3]{\frac{x}{8y}}$	Separate into two separate fractions
$\sqrt[3]{\frac{1}{8} \cdot \frac{x}{y}}$	Use Product Property of Radicals
$\sqrt[3]{\frac{1}{8}} \cdot \sqrt[3]{\frac{x}{y}}$	Use Quotient Property of Radicals and $\frac{x}{y} = xy^{-1}$
$\frac{\sqrt[3]{1}}{\sqrt[3]{8}} \cdot \sqrt[3]{xy^{-1}}$	Simplify
$\frac{1}{2}\sqrt[3]{xy^{-1}}$	Our Solution

SUMMARY

We can use the **properties of radicals** to simplify expressions and solve equations. There are some **cautions when applying the properties**. The properties of radicals apply only to factors, numbers, and variables combined by multiplication, not by addition or subtraction.

Source: ADAPTED FROM "BEGINNING AND INTERMEDIATE ALGEBRA" BY TYLER WALLACE, AN OPEN SOURCE TEXTBOOK AVAILABLE AT www.wallace.ccfaculty.org/book/book.html. License: Creative Commons Attribution 3.0 Unported License

Д FORMULAS TO KNOW

Product Property of Radicals $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$

Property of Fractional Exponents $\sqrt[n]{\chi^m} = \chi^{\frac{m}{n}}$

Quotient Property of Radicals $\sqrt{\rho}$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$