Sophia

Filters to Specify Data

by Sophia

WHAT'S COVERED

This tutorial explores using various filters to return specific results using different options with the
WHERE and HAVING clauses in two parts:

1. Understanding the Complexity
2. Stepping Through an Example

1. Understanding the Complexity

The complexity of the SELECT statements can increase based on the criteria being asked. In some cases, we
may make use of both the WHERE and HAVING clauses. Recall that the WHERE clause is used as the filter for
individual rows and the HAVING clause is for groups of rows.

Anything that we have in the aggregate function results are items that we can use in the HAVING clause. As
an example, if we were asked to get all of the invoices and cost from the invoice_line table of those that had
the cost as greater than 1, ordered by the invoice_id, the query would look like the following:

SELECT invoice_id, SUM(unit_price * quantity)

FROM invoice_line

GROUP BY invoice_id

HAVING SUM(unit_price * quantity) > 1

ORDER BY invoice_id;

Remember that the WHERE clause sees one row at a time, so we would not be able to evaluate the SUM
across all of the invoice_id values. The HAVING clause is executed after the groups have been created.

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1



Query Results
Row count: 357

invoice_id

1 1.98
2 3.96
3 5.94
- 8.91
5 13.86

If we were asked to expand on this to find invoice_id values that were greater than 100, we could add this to
the HAVING clause to act similar to the WHERE clause:

SELECT invoice_id, SUM(unit_price * quantity)
FROM invoice_line

GROUP BY invoice_id

HAVING SUM(unit_price * quantity) > 1

AND invoice_id > 100

ORDER BY invoice_id;

Query Results

Row count: 270

invoice_id

101 5.94
102 9.91
103 15.86
105 1.98
106 1.98

The reason we could do this is due to the fact that the invoice_id is part of the GROUP BY clause. However, if
we needed to filter based on another column like the unit_price to check if it was more than 1 before we
grouped them, and added it to the HAVING clause:

SELECT invoice_id, SUM(unit_price * quantity)
FROM invoice_line

GROUP BY invoice_id

HAVING SUM(unit_price * quantity) > 1

AND unit_price > 1

ORDER BY invoice_id;

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2



We would have an error generated:

Query Results

This is due to the fact that the unit_price column is not part of the GROUP BY field nor a result of an
aggregate function. To be valid in the HAVING clause, we can only compare the aggregate functions or the
column part of the GROUP BY. For it to be a valid query, the check on the unit_price needs to be moved to
the WHERE clause:

SELECT invoice_id, SUM(unit_price * quantity)
FROM invoice_line

WHERE unit_price > 1

GROUP BY invoice_id

HAVING SUM(unit_price * quantity) > 1

ORDER BY invoice_id;

We should see now that the results look quite different:

Query Results

Row count: 30

invoice_id

87 1.99
88 17.91
89 9.95
96 15.92
97 1.99

This is because we are filtering out the rows that have the unit_price being greater than 1 before we combine
each into groups.

2. Stepping Through an Example

Let's look at another scenario where we are interested in invoices for a set of customers (customer_id
between 20 and 30) that have their billing country in the USA. We want to find those that have had at least
one invoice that has a total larger than 15. We want to also get the total amount they have ordered at all times.
This may seem like a very complex query, but we will want to break the query down first.

First, we know that we are looking for data using the invoice table.

SELECT *

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3



FROM invoice;
Exploring this data, we know that we want to look at a specific set of customers. We can identify two criteria
without aggregate conditions that we can add to a WHERE clause:

SELECT *

FROM invoice

WHERE billing_country = 'USA'

AND customer_id BETWEEN 20 AND 30;
This gives us 63 records that fit these criteria:

Query Results

W count: B3

5 23 2009-01-11T00:00:00.0002 69 Salem Street Boston MA USA 2113 14
16 21 2009-03-05T00:00:00.000Z 801 W 4th Street Reno NV Usa 39503 4
17 25 2009-03-06T00:00:00.000Z 319 N. Frances Street Madison Wi UsaA 53703 6
E:] 21 2003-06-07 TG0:00:00.0002 801 W 4th Strest Reno MY UsA 59503 6
39 a7 2009-06-10T00:00:00.000L 10332 M Park Ave Tucson AL UsA B57192 9
60 23 2009-09-11T00:00:00.000Z 69 Salem Street Boston Ma UsA 2113 a
69 25 2009-10-25T00:00:00.000Z 319 M. Frances Street Madison Wi USA 53703 1

However, we need only the customer_id to be returned along with the SUM of the total and the MAX of the
total. The customer_id should be what we are grouping by as well. This would change our SELECT statement
to look like:

SELECT customer _id, SUM(total),MAX(total)
FROM invoice

WHERE billing_country = 'USA'

AND customer_id BETWEEN 20 AND 30
GROUP BY customer id;

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 4



Query Results

Row count: 9

customer_id

The next step is to find the groups that have the maximum of the total being greater than 15. As this is looking
at an aggregate function, it has to go into the HAVING clause.

SELECT customer_id, SUM(total),MAX(total)
FROM invoice

WHERE billing_country = 'USA'

AND customer_id BETWEEN 20 AND 30
GROUP BY customer_id

HAVING MAX(total) > 15;

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 5



Query Results

Row count: 3

customer_id

In looking at the query, one thing to note is that the customer_id is in the GROUP BY clause, so the
comparison for the customer_id could have also appeared in the HAVING clause as well, like this:

SELECT customer _id, SUM(total),MAX(total)
FROM invoice

WHERE billing_country = 'USA'

GROUP BY customer_id

HAVING MAX(total) > 15

AND customer_id BETWEEN 20 AND 30;
This would deliver the same result set:

Query Results

Row count: 3

customer_id

TRY IT

Your turn! Open the SQL tool by clicking on the LAUNCH DATABASE button below. Then enter in one of
the examples above and see how it works. Next, try your own choices for which columns you want the

query to provide.

SUMMARY

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 6



Building a complex statement with various filters for rows and groups should be built one step at a

time.

Source: Authored by Vincent Tran

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 7



	Filters to Specify Data
	1. Understanding the Complexity
	2. Stepping Through an Example


