Finding the Inverse of a Function

by Sophia

WHAT'S COVERED

In this lesson, you will learn how to determine the inverse of a given function. Specifically, this lesson will cover:

1. Inverse Functions

An inverse function undoes the operations performed on variables of a function.
\rightarrow EXAMPLE If a number is multiplied by 2 , and added by 3 , we can write this as the function
$f(x)=2 x+3$. The inverse to this function first subtracts 3 from the input value, and then divides by 2 ,
so as to completely undo all operations of the original function. We write this as the inverse function $f^{-1}(x)=\frac{x-3}{2}$.

BIG IDEA

If a function becomes the input of an inverse function, then the output is the argument of the original function. Mathematically, we write this as: $f^{-1}(f(x))=x$

2. Evaluating an Inverse Graphically

On a graph, the x - and y-coordinates between a function and its inverse are inverted or swapped. This means that for any coordinate, (x, y), of a function, we can find a corresponding coordinate on the graph of its inverse using the coordinates (y, x). This means we locate the x-value on the y-axis, and locate the y-value on the x axis.
\rightarrow EXAMPLE Check out the graph of a function and its inverse.

Points on $f(x)$	Points on $f^{-1}(x)$
$(2,7)$	$(7,2)$
$(-2,-1)$	$(-1,-2)$

3. Finding the Inverse Algebraically

If we want to find the inverse of a function algebraically, there are two common procedures most people use:

1. Rewrite the equation, except $\operatorname{swap} x$ and y. Then, rewrite the equation so that y is isolated on one side of the equation.
2. Do the same process, but in reverse order. First, you can rewrite the equation so that x is isolated on one side of the equation. Then, simply swap x and y. The resulting equation will be the defined inverse function.
\rightarrow EXAMPLE Find the inverse of $f(x)=\sqrt{2 x-4}$ using the first method where we swap x and y.

$$
\begin{aligned}
f(x)=\sqrt{2 x-4} & \text { Rewrite the function as } y= \\
y=\sqrt{2 x-4} & \text { Swap } x \text { and } y \\
x=\sqrt{2 y-4} & \text { Square both sides } \\
x^{2}=2 y-4 & \text { Add } 4 \text { to both sides }
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+4=2 y & \text { Divide both sides by } 2 \\
\frac{1}{2} x^{2}+2=y & \text { Our solution for } y \\
f^{-1}(x)=\frac{1}{2} x^{2}+2 & \text { Our solution in inverse notation }
\end{aligned}
$$

\mapsto EXAMPLE Find the inverse of $f(x)=\frac{x+7}{3}$.

$$
\begin{aligned}
f(x)=\frac{x+7}{3} & \text { Rewrite the function as } y= \\
y=\frac{x+7}{3} & \text { Swap } x \text { and } y \\
x=\frac{y+7}{3} & \text { Multiply both sides by } 3 \\
3 x=y+7 & \text { Subtract } 7 \text { from both sides } \\
3 x-7=y & \text { Our solution for } y \\
f^{-1}(x)=3 x-7 & \text { Our solution in inverse notation }
\end{aligned}
$$

\square HINT

Technically, we need to restrict the domain of the inverse function to non-negative values of x. This is because the range of the original function was restricted to non-negative y-values. The domain and range of a function also swap when defining the domain and range of its inverse.

The inverse of a function undoes the operations of the function. We can evaluate an inverse graphically by comparing the coordinate points. All points on the curve of $f(x)$ can be described as (x, y). All points on the curve inverse of $f(x)$ can be described as (y, x), where x and y are the coordinates of the original function. The inverse can be found algebraically by swapping x and y, and then solving the equation for y.

[^0]
[^0]: Source: ADAPTED FROM "BEGINNING AND INTERMEDIATE ALGEBRA" BY TYLER WALLACE, AN OPEN SOURCE TEXTBOOK AVAILABLE AT www.wallace.ccfaculty.org/book/book.html. License: Creative Commons Attribution 3.0 Unported License

