Sophia

Horizontal and Vertical Lines

by Sophia

: = WHAT'S COVERED

This tutorial covers horizontal and vertical lines, through the exploration of:

1. Horizontal Lines
2. Vertical Lines
3. Graphing Horizontal and Vertical Lines

1. Horizontal Lines

Below is an example of a horizontal line. Because it's horizontal, the y-coordinate is the same for all points on the line no matter what the value of x is. If you look at two points on the line, $(-3,2)$ and $(4,2)$, you can see that the y value is 2 at both points. Therefore, you can write the equation for the line as y equals 2 , because the y value is always 2 .

KEY CONCEPT

In general, all horizontal lines can be written as $\mathrm{y}=\mathrm{a}$, where a is a constant value.
Another important feature of horizontal lines is that the slope of all horizontal lines is 0 , because there is no change in the y value between any two points on the line, and the numerator will always be 0 when calculating
the slope between any two points on the horizontal line.

\int FORMULA TO KNOW

Slope for Horizontal Lines

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad y_{2}-y_{1}=0 \text { for horizontal lines }
$$

2. Vertical Lines

Below is an example of a vertical line. Because it's vertical, the x-coordinate is the same for all points on the line no matter what the value of y is. If you look at two points on the line, $(1,-5$,$) and (1,3)$, you can see that the x value is 1 at both points. Therefore, you can write the equation for the line as x equals 1 , because the x value is always 1.

In general, all vertical lines can be written as $x=a$, where a is a constant value.
Another important feature of vertical lines is that the slope of all vertical lines is undefined because there is no change in the x value between any two points on the line. You can see from the slope formula that because the x values are always the same, the denominator will always be 0 when calculating the slope between any two points on a vertical line.

Π FORMULA TO KNOW

Slope for Vertical Lines

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad x_{2}-x_{1}=0 \text { for vertical lines }
$$

3. Graphing Horizontal and Vertical Lines

You can also graph horizontal and vertical lines from an equation.
\Rightarrow EXAMPLE Suppose you have y equals -3 . You know that this will be a horizontal line because the y value will be -3 for all points on the line, and the graph will go through -3 on the y-axis. Therefore, to graph this equation, you find -3 on the y-axis and draw a horizontal line through the point.
$y=-3$

\Leftrightarrow EXAMPLE Suppose you have x equals -4 . You know that this will be a vertical line because the x value will be -4 for all points on the line, and the graph will go through -4 on the x-axis. Therefore, to graph this equation, find -4 on the x-axis and draw a vertical line through the point.
$x=-4$

Today you learned about graphing horizontal and vertical lines. You learned that the y-coordinate for all horizontal lines is the same no matter what the value of x is, and that all horizontal lines have a slope
of 0 . You also learned that the x-coordinate for all vertical lines is the same no matter what the value of y is, and that all vertical lines have a slope that is undefined.

Source: This work is adapted from Sophia author Colleen Atakpu.

$』$ FORMULAS TO KNOW

Slope for Horizontal Lines

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, y_{2}-y_{1}=0
$$

Slope for Vertical Lines

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2}-x_{1}=0
$$

