## Sophia

## Identifying Intercepts of a Line

by Sophia

## WHAT'S COVERED

This tutorial covers identifying intercepts of a line, through the exploration of:

1. Defining $x$ - and $y$-Intercepts
2. Identifying Intercepts from a Graph
3. Identifying Intercepts from an Equation

## 1. Defining $x$ - and $y$-Intercepts

The x-intercept is the location on a graph where a line or a curve intersects the $x$-axis. The coordinate pair of any $x$-intercept is $(x, 0)$ because the value of $y$ is always 0 on the $x$-axis.

The $y$-intercept is the location on the graph where a line or curve intersects the $y$-axis. The coordinate pair of any $y$-intercept is $(0, y)$ because the value of $x$ is always 0 on the $y$-axis.

## 日 TERMS TO KNOW

x-Intercept
The location on a graph where a line or curve intersects the $x$-axis: $(x, 0)$
y-Intercept
The location on a graph where a line or curve intersects the $y$-axis: ( $0, y$ )

## 2. Identifying Intercepts from a Graph

You can visually identify the $x$ - and $y$-intercepts on a graph. For example, the graph below shows the height above ground of a plane during its descent in relation to time in minutes.

The y-intercept is represented by the pair ( $0,30,000$ ). This means that after 0 minutes of descent, the plane is 30,000 feet above the ground.


The x-intercept of the graph is represented by the order paired ( 10,0 ). This means that after 10 minutes, the height of the plane is 0 feet above ground.


## 3. Identifying Intercepts from an Equation

You can also find the $x$ - and $y$-intercepts from an equation. An equation in two variables is an equation with terms involving two distinct variables. Most commonly, these variables are $x$ and $y$.
$\Rightarrow$ EXAMPLE The equation below represents the balance of debt during a 24-month repayment period, with the corresponding graph representation.

$$
y=-45 x+1080
$$



You can find the x -intercept by substituting O for y in the equation and then solving the equation for x .


Doing this, your expression becomes:
$0=-45 x+1080$

You can start to solve this equation for $x$ by subtracting 1,080 from both sides. Next, divide by -45 on both sides, which provides $x$ equals 24 . Therefore, the $x$-coordinate of the $x$-intercept is 24 , and the ordered pair of the $x$-intercept is $(24,0)$. This means that after 24 months, the balance of debt is $\$ 0$.

$$
\begin{aligned}
& 0=-45 x+1080 \\
& 0-1080=-45 x+1080-1080 \\
& -1080=-45 x \\
& \frac{-1080}{-45}=\frac{-45 x}{-45} \\
& 24=x
\end{aligned}
$$

Similarly, you can find the y-intercept by substituting 0 for x in the equation and then solving the equation for $y$.


Substituting 0 for x , your equation is:
$y=-45(0)+1080$

Solve the equation by multiplying -45 times 0 , which equals 0 . Next, add 0 and 1,080 , which equals 1,080 . Therefore, $y$ equals 1,080 . The $y$-coordinate of the $y$-intercept is 1,080 , and the ordered pair of the $y$ intercept is $(0,1080)$. This means that after 0 months, the balance of debt is $\$ 1,080$.
$y=-45(0)+1080$
$y=0+1080$
$y=1080$

## BIG IDEA

Note that for equations written as $y=a x+b$ (slope intercept form), as in the preceding example, the $y$ intercept can easily be defined by $b$, or the constant value at the end of the equation, since a times $x$ will always be 0 when x is 0 for any value of $a$.

## $\Pi$ FORMULA TO KNOW

## Slope-Intercept Form of a Line

$$
y=m x+b
$$

$\Leftrightarrow$ EXAMPLE Try finding the $x$ - and $y$-intercepts for the following equation in slope-intercept form.
$y=5 x-30$

To find the $x$-intercept, you know that the value of $y$ will be 0 , so you can substitute 0 for $y$ into the equation and solve for $x$. This provides 0 equals $5 x$ minus 30 . To solve for $x$, start by adding 30 to both sides of the
equation. Divide by 5 on both sides, which simplifies to 6 is equal to $x$. The $x$-intercept can be written as the ordered pair (6,0).
$0=5 x-30$
$0+30=5 x-30+30$
$30=5 x$
$\frac{30}{5}=\frac{5 x}{5}$
$6=x$
$(6,0)$

## ■ HINT

Notice that the y value of the ordered pair is 0 , because the value of y is always 0 at the x -intercept.

Next, to find the $y$-intercept, substitute 0 for x in the equation and solve for y . You know that the y -intercept will always be the value of $b$ in our equation, because when $x$ is 0 , a times $x$ will always equal 0 for any value of $a$. However, you can complete the steps to solve the equation for $y$ to show that this is true. Substitute 0 for x , then simplify the right side of the equation, arriving at the expression $y$ equals -30 . The $y$-intercept can be written as the ordered pair $(0,-30)$.
$y=5(0)-30$
$y=0-30$
$y=-30$
( $0,-30$ )

## $\boxminus$ HINT

Notice that the x value of the ordered pair is 0 , because the value of x is always 0 at the y -intercept.

## - TERM TO KNOW

## Equation in Two Variables

An equation with terms involving two distinct variables

## SUMMARY

Today you learned the definition of the $x$ - and $y$-intercepts on a graph, which is where a line or curve intersects each respective axis. You also learned how to identify the $x$ - and $y$-intercepts from a graph, as well as how to identify the $x$ - and $y$-intercepts from an equation.

Source: This work is adapted from Sophia author Colleen Atakpu.

## Equation in Two Variables

An equation with terms involving two distinct variables.

## X-Intercept

The location on a graph where a line or curve intersects the $x$-axis: $(x, 0)$.

## Y-Intercept

The location on a graph where a line or curve intersects the $y$-axis: $(0, y)$.

## $\Pi$ FORMULAS TO KNOW

## Slope-Intercept Form of a Line

$y=m x+b$

