Identifying Points on Parabola

by Sophia

WHAT'S COVERED

This tutorial covers how to identify points on a parabola, through the definition and discussion of:

1. Parabolas

A parabola is the shape of the graph of a quadratic equation. Parabolas have a general U shape to them, either opening up or opening down. In the general quadratic equation below, the coefficient a determines the upward or downward shape of the parabola.
$y=a x^{2}+b x+c$

- When the coefficient a is positive, the parabola will open upward.
- When the coefficient a is negative, the parabola will open downward.

"a" positive, parabola opens upward

"a" negative, parabola opens downward
Even though we don't know the equation to the graphs above, you can see if the value of a is positive or negative. Graphing parabolas can be used to model the path of objects in motion, solve problems involving area, and solve optimization problems.

2. Vertex of a Parabola

Every parabola has either a low point or a high point on the graph called thevertex. In the graph below, the parabola has a low, or minimum, point. The minimum point has the lowest y-value on the parabola. The second parabola below has a high, or maximum, point, which has the highest y-value on the parabola.

HINT

Remember, when looking at the equation of a quadratic graph, if the a coefficient of a quadratic equation is positive, the parabola opens upward and the vertex is a minimum point. If the a coefficient is negative,

E TERM TO KNOW

Vertex (of a Parabola)

The maximum or minimum point of a parabola

3. x-Intercepts of a Parabola

The x-intercept of a graph is a point where that graph intersects the x-axis and when y equals 0 . The y intercept of a graph is a point where the graph intersects the y-axis and when x equals 0 . On a parabola, the x-intercepts are the x-values that make y equal to 0 , and they also correspond to the solutions of the quadratic equation.
\rightarrow EXAMPLE In the graph below, how can you solve the quadratic equation: $x^{2}-8 x+15=0$?

You solve the equation by graphing the equation below and identifying the x-intercepts of the graph.

$$
y=x^{2}-8 x+15
$$

You can see in the graph above that your x-intercepts are $(3,0)$ and $(5,0)$. Therefore, the solutions to the quadratic equation are:

$$
x=3
$$

$$
x=5
$$

4. Solutions to a Quadratic Equation on a Graph

You can determine the solutions to a quadratic equation by looking at a graph.
\rightarrow EXAMPLE Suppose you have another example of a parabola, with the equation:
$y=-\frac{1}{2} x^{2}-2 x$

The vertex of this graph is a maximum point and is at the point $(-2,2)$ on the graph. The x-intercepts of the graph are at the points $(-4,0)$ and $(0,0)$.

Again, the x-intercepts are the solution to this quadratic equation.
$-\frac{1}{2} x^{2}-2 x=0$

Therefore, the solutions to this equation are:
$x=-4$
$x=0$

SUMMARY

Today you learned that a parabola is the shape of the graph of a quadratic equation, and that it has a general U shape, either opening up or opening down. You learned that in the general quadratic equation, the coefficient a determines the upward or downward shape of the graph. You also learned that every parabola has either a low point or a high point on the graph called the vertex, and that if the coefficient of a quadratic equation is positive, the vertex is a minimum point, whereas if the a coefficient is negative, the vertex is a maximum point. Lastly, you learned that the x-intercepts of a parabola are the x-values that make y equal 0 and also correspond to thesolutions of the quadratic equation on a graph.

Source: This work is adapted from Sophia author Colleen Atakpu.

TERMS TO KNOW

Vertex (of a Parabola)

The maximum or minimum point of a parabola.

