+
Identifying the Graph of a Quadratic Equation

Identifying the Graph of a Quadratic Equation

Author: Colleen Atakpu
Description:

In this lesson, students will learn how to identify the parabola that represents a given quadratic equation.

(more)
See More

Try Our College Algebra Course. For FREE.

Sophia’s self-paced online courses are a great way to save time and money as you earn credits eligible for transfer to over 2,000 colleges and universities.*

Begin Free Trial
No credit card required

25 Sophia partners guarantee credit transfer.

221 Institutions have accepted or given pre-approval for credit transfer.

* The American Council on Education's College Credit Recommendation Service (ACE Credit®) has evaluated and recommended college credit for 20 of Sophia’s online courses. More than 2,000 colleges and universities consider ACE CREDIT recommendations in determining the applicability to their course and degree programs.

Tutorial

Video Transcription

Download PDF

[TYPING SOUNDS] [MUSIC PLAYING]

Let's look at our objectives for today. We'll start by reviewing parabolas. We'll then look at how to calculate the vertex of a parabola. We'll see how to determine the x- and y-intercepts of a parabola. And finally, we'll do some examples identifying a graph from an equation of a parabola.

Let's start by reviewing parabolas. The graph of a quadratic equation is called the parabola, which can either open upwards or downwards. Parabolas have a vertex, which represents a minimum or maximum point on the graph depending on the direction of the parabola.

Quadratic equations in the form below, y equals ax squared plus bx plus c, can give us information about the shape and vertex of the parabola. If the value of the a-coefficient in the equation is positive, the parabola opens upwards and the vertex represents a minimum point. If the value of a coefficient in the equation is negative, the parabola opens downwards and the vertex represents a maximum point.

Now let's review the vertex of a parabola. Equations in the form below, y equals ax squared plus bx plus c, can also help us determine the coordinate of the vertex of the parabola. The values of a and b, and the formula below, x equals negative b over 2 times a, are used to find the x-coordinate of the vertex of the parabola. Once we have the x-coordinate of the vertex of the parabola, we can then substitute this value into the quadratic equation to find the y-coordinate of the vertex.

Now let's look at how to find the intercepts of a parabola. The y-intercept is the point at which the graph intersects the y-axis. On the y-axis the value of x is always 0. Therefore, we can determine the y-intercept by substituting 0 for x in the equation and solving for y. In the general equation below, y equals ax squared plus bx plus c, when x equals 0 the x squared term will equal 0, and the x term will equal 0. Therefore, the y-intercept of any quadratic equation is given by the constant term c.

The x-intercepts are the points at which the graph intercepts the x-axis. On the x-axis, the value of y is always 0. Therefore, we can determine the x-intercepts by substituting 0 for y in the equation and solving for x. Therefore, finding the x-intercepts of any parabola is the same as solving the quadratic equation, since the solutions to a quadratic equation are found by setting the equation equal to 0. The x-intercepts of a parabola are also known as the roots, 0's, or solutions of the quadratic equation.

Now let's look at how to identify a graph from a quadratic equation. Given the quadratic equation below, y equals x squared minus 2x minus 3, which of these four graphs represents the equation? We can use information about the sign of the coefficient a, the vertex, and the x and y-intercepts to eliminate possible graphs.

First, we see that the value of a is 1, which is positive. Therefore, we know that the graph should be facing upwards, so we can eliminate the last graph. Next, we see that the value of c is negative 3, which means the y-intercept of the graph is negative 3. Therefore, we can eliminate the first graph.

Next, we can use the formula for the x-coordinate of the vertex to find that x value of the vertex. Substituting our values for b and a, gives us negative, negative 2 over 2 times 1. This simplifies to positive 2 over positive 2, which equals 1. Therefore, the x-coordinate of our vertex is a positive 1. And we can eliminate the second graph, which has an x-coordinate of negative 1.

Therefore, the graph which matches our equation is the third graph here. The x-intercepts are at negative 1, 0 and 3, 0. These are the roots or 0's of the equation, or the x values, that make y equal to 0.

Let's go over our important points from today. Make sure you get these in your notes so you can refer to them later. The y-intercept of a graph is when the value of x is equal to 0. The y-intercept of any quadratic equation is given by the constant term c.

The x-intercept of a graph is when the value of y is equal to 0. Therefore, finding the x-intercept of a parabola is the same as solving the quadratic equation, since the solutions to a quadratic equation are found by setting the equation equal to 0. The x-intercepts of a parabola are also known as the roots, 0's, or solutions to a quadratic equation.

So I hope that these important points and examples helped you understand a little bit more about identifying the graph of a quadratic equation. Keep using your notes, and keep on practicing, and soon you'll be a pro. Thanks for watching.

Notes on "Identifying the Graph of a Quadratic Equation"

00:00 – 00:37 Introduction

00:38 – 01:25 Parabolas

01:26 – 02:04 Calculating the Vertex of a Parabola

02:05 – 03:26 Determining the x and y Intercepts of a Parabola

03:27 – 05:06 Identifying a Graph from an Equation

05:07 – 06:07 Important to Remember (Recap)

TERMS TO KNOW
  • KEY FORMULA

    x = -b/2a