
Isolation
by Sophia Tutorial

This tutorial explores the isolation property in a transaction and how it affects the database in two

parts:

1. Introduction

2. Isolation Example

1. Introduction

The isolation property in a transaction ensures that if there are multiple transactions run at the same time as
one another, they do not leave the database in an inconsistent state. The transactions themselves should not
interfere with one another, and each of the transactions should be run independently. Any changes that are
being modified in a transaction will only be visible to its own transaction, and any other concurrent transaction
will not see the results of the changes until the transaction is complete and the data has been committed. This
also ensures that transactions that run concurrently have the results the same as if they were run sequentially.

In addition, the isolation property ensures that the data that is used in a transaction cannot be used in another
transaction until the original transaction is complete with it. Most databases including PostgreSQL will use
locking to maintain transactional isolation.

2. Isolation Example

Let us consider our banking example yet again. Jennifer would like to make a $100 payment to Randall
through an account transfer. This transaction is a balance transfer between two accounts at two different
branches of the same bank. Here's what the transaction looks like:

1. Jennifer’s (10) account would be deducted by $100.

2. The banking location where Jennifer has her account would have their location’s account deducted by

$100.

3. The banking location where Randall(50) has his account would be increased by $100.

4. Randall’s account would be increased by $100.

Let us look at the transaction in SQL:

WHAT'S COVERED

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

BEGIN;

UPDATE customer_account

SET balance = balance – 100

WHERE account_id = 10;

UPDATE branch_account

SET balance = balance – 100

WHERE branch_id = (SELECT branch_id FROM customer_account where account_id = 10);

UPDATE branch_account

SET balance = balance + 100

WHERE branch_id = (SELECT branch_id FROM customer_account where account_id = 50);

UPDATE customer_account

SET balance = balance +100

WHERE account_id = 50;

COMMIT;

Let us say that both Jennifer’s and Randall's account balance started at $1000. If Jennifer was attempting to
start this transaction and Randall concurrently was trying to check his account balance, Randall should not see
any updates to his account until the changes are made and the transaction has committed. If Randall queries
for his customer_account balance, it would be at $1000 until the entire transaction from Jennifer executes
successfully and commits the data to the database. In certain databases, if Randall tried to query his account
balance, no result would be provided until Jennifer’s transaction was completed.

Isolation is increasingly important as you have more concurrent transactions that access the same data. For
example, imagine a situation where Randall is receiving two different account transfers from two different
individuals at the same time.

Imagine Randall is receiving $100 from Jennifer and $50 from Paul. If there was not isolation in place,
Jennifer’s transaction could check Randall’s balance at $1000. At the same time, Paul’s transaction could
check Randall’s balance at $1000. Jennifer’s transaction would add $100 to the $1000 and save the results.
Paul’s transaction would add $50 to the $1000 and save the results. The final result is that Randall’s account
balance is $1050, instead of $1150. This could be the case if Jennifer's and Paul's transactions are both
reading Randall’s balance at the same time. Jennifer’s transaction started and updated the balance, but Paul’s
transaction also completed and saved over Jennifer’s transaction. This is why isolation is important, as
Jennifer’s transaction would prevent Paul's transaction from reading the value. Even if the value is read, Paul’s
transaction would not be able to complete due to the inconsistency in the database state.

The isolation property ensures that multiple transactions can run concurrently without leading to the

inconsistency in the database state.

Source: Authored by Vincent Tran

SUMMARY

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

	Isolation
	1. Introduction
	2. Isolation Example

