Don't lose your points!
Sign up and save them.
+
Isotonic, Hypotonic, & Hypertonic Solutions

Isotonic, Hypotonic, & Hypertonic Solutions

Author: John Lui
Description:

To show students how different concentrations in solutions can affect the cell.

Students will learn about isotonic, hypertonic, and hypotonic solutions and how these solutions affect the movement of water molecules across the cell membrane.

(more)
See More
Fast, Free College Credit

Developing Effective Teams

Let's Ride
*No strings attached. This college course is 100% free and is worth 1 semester credit.

28 Sophia partners guarantee credit transfer.

281 Institutions have accepted or given pre-approval for credit transfer.

* The American Council on Education's College Credit Recommendation Service (ACE Credit®) has evaluated and recommended college credit for 25 of Sophia’s online courses. Many different colleges and universities consider ACE CREDIT recommendations in determining the applicability to their course and degree programs.

Tutorial


Cells in Hypotonic Solutions
Hypotonic comes from the Greek "hypo," meaning under, and "tonos," meaning stretching. In a hypotonic solution the total molar concentration of all dissolved solute particles is less than that of another solution or less than that of a cell. 
If concentrations of dissolved solutes are less outside the cell than inside, the concentration of water outside is correspondingly greater. When a cell is exposed to such hypotonic conditions, there is net water movement into the cell. Cells without walls will swell and may burst (lyse) if excess water is not removed from the cell. Cells with walls often benefit from the turgor pressure that develops in hypotonic environments.


Cells in Hypertonic Solutions
Hypertonic comes from the Greek "hyper," meaning over, and "tonos," meaning stretching. In a hypertonic solution the total molar concentration of all dissolved solute particles is greater than that of another solution, or greater than the concentration in a cell. 
If concentrations of dissolved solutes are greater outside the cell, the concentration of water outside is correspondingly lower. As a result, water inside the cell will flow outwards to attain equilibrium, causing the cell to shrink. As cells lose water, they lose the ability to function or divide. Hypertonic environments such as concentrated brines or syrups have been used since antiquity for food preservation because microbial cells that would otherwise cause spoilage are dehydrated in these very hypertonic environments and are unable to function.


Cells in Isotonic Solutions
When two environments are isotonic, the total molar concentration of dissolved solutes is the same in both of them. 
When cells are in isotonic solution, movement of water out of the cell is exactly balanced by movement of water into the cell. A 0.9% solution of NaCl (saline) is isotonic to animal cells. When exposing animal tissues to solutions, it is common to use an isotonic solution such as Ringer's buffered saline so as to prevent osmotic effects and consequent damage to cells.


 

Source: Pearson Education

Hypotonic & Hypertonic Experiment Video

The video shows what happens when you put a cell in different types of solutions

Source: ccspacecenter