
LIMIT and OFFSET to Cap Results
by Sophia



This tutorial explores using the LIMIT and OFFSET clauses to cap results in two parts:

1. LIMIT Clause

2. OFFSET Clause

1. LIMIT Clause

The LIMIT clause helps to constrain the number of rows that are returned by a query. It is an optional clause
added to the end of the SELECT statement.

SELECT <columns>
FROM <tablename>
LIMIT <rowcount>;
For example, let’s take a look at invoices by their total values in descending order:

SELECT *
FROM invoice
ORDER BY total DESC;
This ends up returning all of the rows (412 in this case), although in a larger database, this can take a long time
to return all rows:

If we were only interested in looking at the top five, we could add the LIMIT clause so that the query only
returns the top five rows:

WHAT'S COVERED

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

SELECT *
FROM invoice
ORDER BY total DESC
LIMIT 5;

You will see the same top five rows as the prior query, but it returns much faster. Exploring data in small sets
can be more efficient. Think about how you search results on a search engine. The results do not return every
single result on the same page; it would simply be too slow to do so. Instead, they return only the top few
results.

Let’s look at another example of invoices that have the billing_country as Belgium in descending order:

SELECT *
FROM invoice
WHERE billing_country = 'Belgium'
ORDER BY total DESC;
This should return seven rows:

If we had set the LIMIT to 10:

SELECT *
FROM invoice
WHERE billing_country = 'Belgium'
ORDER BY total DESC
LIMIT 10;
The result set would stay the same, with seven rows:

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

2. OFFSET Clause

If we want to skip a number of rows when returning results, we can use the OFFSET clause. The OFFSET
clause is placed after the LIMIT clause.

SELECT <columns>
FROM <tablename>
LIMIT <rowcount>
OFFSET <rowstoskip>;
By doing this, the statement will skip the first number of rows in the OFFSET and then return the number of
rows based on the LIMIT. A search engine with multiple pages of content works in a very similar way.

Using our invoice example, perhaps we want to look through each set of invoices five lines at a time. To look
at the next five rows, we would run the query using:

SELECT *
FROM invoice
ORDER BY total DESC
LIMIT 5
OFFSET 5;

If we wanted to look at the next five rows after that:

SELECT *
FROM invoice
ORDER BY total DESC
LIMIT 5
OFFSET 10;

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

Using the OFFSET and LIMIT clauses, we can jump to any subset of rows being returned within the SELECT
statement.

Looking at our prior example of invoices in Belgium:

SELECT *
FROM invoice
WHERE billing_country = 'Belgium'
ORDER BY total DESC
LIMIT 10;

Recall that the result set returned seven rows. But look at what happens if we add the OFFSET to 5.

SELECT *
FROM invoice
WHERE billing_country = 'Belgium'
ORDER BY total DESC
LIMIT 10
OFFSET 5;
Again, this would skip the first five rows and return the number of rows remaining, up to the LIMIT of 10:

If we had added an OFFSET of 10, we would exceed the number of rows available to return:

SELECT *
FROM invoice
WHERE billing_country = 'Belgium'
ORDER BY total DESC
LIMIT 10

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 4

OFFSET 10;
So the query would simply return 0 rows:

Video Transcription

[MUSIC PLAYING] When we select from a table, we're returning all the rows with a table. As our tables

get larger, this isn't always something that's feasible, being that the query would run for a long time. So

what we can do is utilize limit and offset to be able to make some manipulations with the data so that

we're not having to return all the data components all at once. So in this example here, if we're selecting

from the customer, we're returning 59 rows. We can certainly scroll through and then take a look at

every single row. However, this is certainly not viable as data sets get larger.

So what we can do is add a component here, which will be the limit keyword, and then the number of

rows that we want to return. So in this case here, if we set it at five, we can go ahead and run this. And

what this will do is just return the first five rows that meets whatever criteria there is. So in this case here,

being that we're ordering and based on the customer ID, it's only going to return the first five.

We can make a change in this case here, utilizing the offset to be able to offset the results with the same

limit parameter. So for example, in this case here, if we make an offset set to five, what this will do is that

it'll skip the first five rows and then display the next five. So we're limiting it still to five. In this case here,

it'll just make a manipulation to make that jump. If we change it to 10, it'll start at 11 in this case here for

the customer ID and return the next five rows that would meet the criteria.

So one of the benefits in this case here with utilizing that option is that you can control all the different

components of the offset and the limit without returning all the rows within a specific table. [MUSIC

PLAYING]

 TRY IT

Your turn! Open the SQL tool by clicking on the LAUNCH DATABASE button below. Then enter in one of

the examples above and see how it works. Next, try your own choices for which columns you want the

query to provide.



The LIMIT and OFFSET clauses are used to cap records returned from SELECT statements.

Source: Authored by Vincent Tran

SUMMARY

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 5

	LIMIT and OFFSET to Cap Results
	1. LIMIT Clause
	2. OFFSET Clause
	Video Transcription

