
Role of a Software Engineer
by Devmountain Tutorials

This section will explore the role of a software engineer by discussing:

1. A BROAD VIEW

2. DIFFERENT LANGUAGES, ALGORITHMS, AND SERVERS

3. DAILY WORK OF A SOFTWARE ENGINEER

4. CODE REVIEWS AND PAIR PROGRAMMING

Software Engineer

Hi, I’m Monique. I’m the Software Engineer at Poodle Jumper and I’ve been working here for nine months.

Before I joined tech, I taught French and Spanish to high school students. I loved teaching but I needed a

career with more flexibility. I enrolled at Hackbright Academy, a Software Engineering bootcamp for women

based in San Francisco. I’m not going to lie, the bootcamp was challenging. For 12 weeks we started lectures

at 10:00 am and spent the entire day learning, practicing, and creating projects. Making a career pivot later in

life was intimidating, but I love the community of talented engineers I joined.

The schedule flexibility I have as an engineer makes it possible to raise a young family and have a career that

challenges me. I’ve been able to leverage my teaching skills to mentor other engineers who are just starting

out.

1. A BROAD VIEW

WHAT'S COVERED

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

https://www.nature.com/articles/s41598-020-60661-8

There are many niches of software engineers; one you’ve already learned about iOS Engineering and Web

Development. The term 'Software Engineer' is broader than those roles. The low-level problems solved are

very similar, but the high-level problems are different. Software Engineers have additional responsibilities to

understand how computer memory works, creating logic or algorithms, and managing how software interacts

across the different layers of technology. You may hear these systems referred to as the backend. Backend

technology is the servers, applications, and databases that work behind the scenes to power the interface

users interact with.

Software engineering is a unique discipline that combines features typically exclusive to mathematic,

scientific, and creative fields. Like mathematicians, they use specialized languages to denote ideas. Like

scientists, they must understand the rules that govern how code runs on computers. Like designers and

engineers, they create solutions by assembling individual components into systems and evaluate tradeoffs

among alternatives.

You don’t have to love math, be a trained scientist, or a skilled designer to excel as a software engineer. The

most important skill for a software engineer is problem-solving—the ability to formulate problems, devise

creative solutions for them, and communicate those solutions effectively. The types of problems that Software

Engineers encounter can vary, but the way they approach building solutions to those problems is similar.

 STEP BY STEP

1. Develop a general solution.

2. Communicate the solution to a computer, in a way that the computer understands.

3. Use the computer to automate the execution of that solution.

At their essence, a Software Engineer writes code to solve problems and create computer systems or

applications that do something useful.

2. DIFFERENT LANGUAGES, ALGORITHMS, AND
SERVERS

While Ruben focuses on the web application and Camilla focuses on the iOS apps, my role is to make the

code that ties it all together, keeps it in sync, and enforces the business logic.

My experience with multiple languages has been really helpful for learning the syntax or structure of different

programming languages. In my role, I work with multiple different programming languages depending on what

I’m trying to do. This can be a tricky part of starting in software engineering because [brackets], {curly braces},

and ‘single quotes’ do different things in different languages, but like most things–it gets easier the more you

work with it.

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

This image shows a bubble sort algorithm in three different languages.

Bubble sort is the first sorting algorithm most developers learn because it is simple and easy for small data

sets, but it is notoriously inefficient in real-world applications. It’s so bad that it’s become a joke in the tech

community. The left section of code is in Python, the middle is in JavaScript, and the right is in Rust. Don’t

worry about being able to understand the code, but you can see differences in the structure, formatting, and

syntax.

The backend systems I manage include powerful computers, also known as servers, that send information, or

data, to code that displays for users. Ten years ago, most companies had to buy and manage expensive

servers on-site, but now, most companies leverage servers from a cloud technology provider such as

Microsoft, Google, or Amazon.

When someone says “It’s in the cloud,” what they mean is that it is in a server somewhere else. The “cloud” is

a really large network of computers that talk to each other, just like the internet. As the engineer, I know

where those servers and data are physically located. I deploy, or release, the updates to the code on the

servers and make sure our code and data are backed up regularly in case of a service outage.

I’m responsible for managing the server’s performance and memory. I set up monitoring with alerts to tell me

when something is out of the ordinary. This can happen at any time, day or night, so the team and I have an

on-call rotation to make sure someone is always available to solve an issue that might come up. This is a lot of

responsibility. When I’m on-call, I keep my computer close and my notifications on.

 BIG IDEA

Are you someone who hates math, and you are afraid that it may get in the way of your ability to learn how to

code? A recent study published in Scientific Reports https://www.nature.com/articles/s41598-020-60661-8

found that language aptitude accounted for a higher variance in learning outcomes than numeracy. Don’t let

stereotypes get in the way of your career options. We need more engineers with diverse backgrounds and

perspectives building technology.

3. DAILY WORK OF A SOFTWARE ENGINEER

The code that I’m responsible for includes the servers and databases mentioned in the last section as well as

applications that control the logic for how things work.

In the last iteration, I created a recommendation engine to help customers view the service providers based

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

https://www.nature.com/articles/s41598-020-60661-8
https://www.nature.com/articles/s41598-020-60661-8

on their reviews and the reputation of the service provider. I create integrations between different parts of our

technology stack, but also integrations to third parties. When Camilla was creating the iOS app, I helped

create an integration to send notifications to our users through Apple’s Push Notification service.

In addition to the code I write, I’m responsible for collaborating with the dev team. My coworkers told you

about some of the regularly scheduled meetings we have.

I’m going to show you more about engineering collaboration that happens. You might think that engineers

spend a lot of time working alone based on the stereotypes, but that isn’t the case for most engineers. We

spend a significant amount of our time in meetings and collaborating. Collaborating with your peers feels more

like conversations and less like traditional meetings because they happen as needed.

The first collaboration point is an architecture planning discussion. This is where the developers and

engineers get together to diagram or whiteboard, how different systems will integrate. We identified

dependencies, requirements, and possible solutions. We focus on creating a solution that is flexible so it can

change as needed, scaleable so it can grow to support a large number of users without significant cost,

modular so parts of the code can be reused in other places, and reliable so we can count on it working. We

plan who is going to complete the different development tasks and make sure that we’ve documented the

design.

Architecture Planning Meeting

4. CODE REVIEWS AND PAIR PROGRAMMING

Code reviews are the most common way engineers and developers collaborate. A code review is a process

where your peers review the code you’ve written before it is accepted and merged into the main code

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 4

repository. This allows us to check for mistakes with a fresh pair of eyes and ensure we have the same

understanding of the requirements. Because everyone has their own way of writing code, I need to make it

presentable and readable, so it is easy to understand.

Feedback from code reviews can be contentious if you aren’t self- and socially aware. Critiques can be

painful, especially if you haven’t built a productive relationship with your peers. When I receive criticism for my

code, I try to understand where they are coming from and look for ways to improve my skills. Reviewing my

teammate’s code allows me the opportunity to share my experience and expertise with them as well. This

creates a great culture of learning.

When engineers find a problem particularly tricky to solve, we like to leverage pair programming. A

collaborative technique where two individuals program on one computer. This allows us to talk through the

smallest details and complexities together. One person types while the other person describes what the code

should be doing at a high level. Then, they switch roles. It can be awkward at first to vocalize the thoughts you

have when coding solo, but practicing explaining complicated ideas clearly and concisely improves your

communication skill and helps you write better code.

Another way we collaborate is with written documentation. Our development team keeps a wiki to capture

important decisions, requirements, architecture designs, standards, and best practices. Everyone is

responsible for contributing and maintaining the wiki.

When writing code in the wiki, you can notate or comment right in-line with the code to explain why you built

something a specific way. There have been times where I’ve forgotten details of my code, so documentation

isn’t just for everyone else–it helps me be efficient as well.

Other documentation we maintain includes release notes and FAQs for the support team. This helps them

understand the expected behavior and how to troubleshoot simple issues that may come up. When an issue

happens that our support team can’t solve, they escalate it to our development team. I’ll walk you through

that process more in the next section.

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 5

	Role of a Software Engineer
	1. A BROAD VIEW
	2. DIFFERENT LANGUAGES, ALGORITHMS, AND SERVERS
	3. DAILY WORK OF A SOFTWARE ENGINEER
	4. CODE REVIEWS AND PAIR PROGRAMMING

