
Sample Software Engineering Project
by Devmountain Tutorials

In this lesson, you will learn how to analyze the steps that the UX designer takes to make sure that the

backend of the servers functions effectively with the applications and systems. Specifically, this lesson

will cover:

1. First Release

Today is a big day at Poodle Jumper! Our team is preparing to release an iteration we’ve been working on for
the past two months. The release provides a new feature for customers to schedule recurring services for
their pets so they don’t have to schedule it manually every time.

This new feature required a few architectural changes, so we’ll need to bring the services down to make the
changes. When this kind of deployment strategy is required, we do the work in the middle of the night to
avoid interruption to our customers and providers.

We schedule it in advance and let the customers and support team know when they can expect the service to
be back up and running. Before the release, I capture snapshots of the database and applications to make
sure we have backups just in case something goes wrong.

Tonight, our release is scheduled for midnight. Everyone from the release team joins the virtual meeting from
home. It starts by bringing down the service and updating the code and database to the new version. This can
be as fast as five minutes or as slow as several hours, depending on the changes.

When the new version is in place, the automated tests run and the team splits up the manual test cases to
make sure it is working as expected. I keep a really close eye on the error logs and analytics to capture
anything unexpected.

If we find major issues that can’t be fixed quickly, the release is rolled back. Luckily, tonight the release is a
success. We’ll get a few hours of sleep before logging in tomorrow to make sure everything is still working
well. I’m on-call, so I know that if anything comes up, I’ll get a call.

WHAT'S COVERED

© 2023 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

The next morning, I come in and immediately look at the analytics and support queue. I know nothing serious
happened because I didn’t get any alerts after the release, but I see one new issue the support team sent to
us.

Amanda (QA) has taken the initiative to look at it and provided me with the details. When the user tries to
schedule a recurring service for her dog, she sees an error message that says, “An unexpected error has
occurred.” Amanda looked at the user's account and saw the same error when she tried to schedule as the
user.

Being able to reproduce an error is extremely helpful for resolving it. We leveraged tools to debug the error
and identified an issue with the data in the user’s account.

We call the environment users to interact with Production. It is bad practice to test with production data
because it can negatively impact users. To avoid this, I make a clone data and put it in a test environment. This
will let us try the fix and verify it works. I run a database command to change the data for the user to the
expected format. Amanda and I try to reproduce the problem, but the error message no longer displays, and
the feature is working as expected.

I’m relieved to have figured out the problem for this one user, but I need to dig a little deeper. Is it possible
that other users will experience this as well?

I run a query, or a search, in the database to identify if anyone else has the same issue with their data. The
query returns 143 additional users in the bad state. I’m able to fix their account with the same command in the
test environment. Amanda and I have a high level of confidence in the fix, so I execute the command in
production and let the support team know we’ve resolved the issue.

© 2023 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

2. Preventing Bugs

It may sound like the job is done and it is time to move on, but I want to circle back and make sure we’ve put in
mechanisms to prevent users from getting into this bad state in the future.

When a small number of users see an error, it is easy to blame them because the feature works for everyone
else, but there is almost always an underlying issue that allows that error to happen. Preventing issues from
happening and fixing them so that they stay fixed is important to the quality of our software.

Not all bugs or issues are solved so quickly. If we can’t reproduce the issue, it is hard to know what code to
change and almost impossible to verify if it is resolved. There are times I find issues in our logs, and I have no
idea how they happened.

It can be really frustrating when I don’t have enough information to fix something. That is why I’m grateful for
our users who report errors that they see. We built a feature in the app so it is easy for users to send us issues
and feedback. But, we do our best to leverage analytics and monitoring, so users don’t have to tell us when
our system breaks.

Every week, I spend a portion of my time thinking about where things will break and creating fault-tolerant
systems. Fault-tolerant means building something so it won’t completely break when an error or something
unexpected happens.

You’d be surprised at the weird things that can break an application. I’ve seen large organizations come to a
screeching halt from a single typo. You may feel like you see technology outages all the time, and you’re right.
They happen even to mature organizations. Computers are amazingly precise, and they can execute with
amazing accuracy–when the humans programming them are equally precise.

At the end of the day, everyone on the development team is responsible for ensuring the quality of our
software. It takes a team effort to make this happen.

This lesson discussed a sample software engineering project, with a focus on two key aspects: the

first release and preventing bugs. The first release involved deploying a new feature that allowed

customers to schedule recurring services for their pets. The team followed a deployment strategy that

minimized disruption to customers, conducted automated and manual testing, and rolled back the

release in case of major issues. After the release, the team addressed a user-reported issue by

debugging and fixing the underlying data issue. The lesson emphasized the importance of preventing

issues from happening and creating fault-tolerant systems. This requires the entire development

team's effort to ensure the quality of the software.

Source: This tutorial was authored by DEVMOUNTAIN and Sophia Learning. Please see our Terms of Use.

SUMMARY

© 2023 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

https://www.sophia.org/terms/

	Sample Software Engineering Project
	1. First Release
	2. Preventing Bugs

