Special Products of Polynomials

Special Products of Polynomials

Author: Abby S

To teach kids about solving special polynomials because they occur a lot in everyday life.

You can learn how to solve special polynomials!

See More
Introduction to Psychology

Analyze this:
Our Intro to Psych Course is only $329.

Sophia college courses cost up to 80% less than traditional courses*. Start a free trial now.


Special Products of Polynomials

When you learn how to recognize the special product polynomials quickly and easily, you can solve them a lot faster

(x-2)(x+2)--- are there any patterns?

(x+5)2--- any patterns here?

(x-6)2--- how about here?

In the first example, you can cancel out the last two number using the equation for a sum and difference pattern: a2 - b2

In the next two examples you can solve easily using the equation for a squared binomial pattern : a2-2ab+b2

Not, let's work out some equations:

1. Write out the sum and difference pattern: a2-b2

(x-2)(x+2)= x2-22

Then you solve the equation:


Now, Let's solve a squared binomial:

1. Write out the square of a binomial pattern: a2+2ab+b2


= x2+2(4)(x)+42

Then, solve the equation:


Here is one more square of a binomial equation:


Write out the square of a binomial pattern: a2+2ab+b2

Substitute the equation numbers into the model equation:


Solve the equation:


As long as you follow the model equation for sum and difference patterns, a2-b2, and the model equation for square of a binomial pattern, a2+2ab+b2, it is extremely easy!


Related Links:




Source: Cite: Algebra 1, McDougal Littell Inc., 2001

Special Products of Polynomials (Video)

Watch special polynomial problems get solved!

Source: Algebra 1, McDougal Littell Inc., 2001