Sophia

The Vertex Formula

by Sophia

:三 WHAT'S COVERED

This tutorial covers how to find the vertex of a parabola, using the vertex formula, through the definition and discussion of:

1. Vertex
2. The Vertex Formula
3. Finding the Vertex

1. Vertex

A parabola is the term used for a graph of a quadratic equation, which can generally be written as:
$y=a x^{2}+b x+c$

If the coefficient a is positive, the graph is a U shape pointing up. If the coefficient a is negative, the graph is a U shape pointing down. A parabola will have a maximum point if the graph is pointing down or a minimum point if the graph is pointing up. The maximum or minimum point of a parabola is called the vertex.

The vertex provides useful information about the highest or lowest value in a quadratic relationship. These highest or lowest values are related to optimization problems, such as maximum profit or minimum cost.

2. The Vertex Formula

You can use the equation for a parabola to find the vertex without looking at the graph. When doing so, it's important to remember the following points about a parabola:

- A parabola is the graph of a quadratic equation in the form: $y=a x^{2}+b x+c$.
- When the coefficient a is positive, the parabola will be upward-facing. When the coefficient a is negative, the parabola will be downward-facing.
- The vertex is the maximum or minimum point on the parabola.

The x-coordinate of the point of the vertex can be found using the following formula, in which a and b are the coefficients in your quadratic equation.

\int FORMULA TO KNOW

x-coordinate of Vertex

$$
x=\frac{-b}{2 a}
$$

Once you have used the formula to find the x-coordinate of the vertex, you can substitute this value in for x in the equation to determine the y-coordinate of the vertex.

3. Finding the Vertex

Suppose an Olympic diver is competing for a medal. Her dive can be modeled by the equation and graph shown below, where x is the time in seconds after she begins the dive and y is the height in feet above the water. In this example, the vertex of the parabola is a maximum point, so by finding the vertex using the vertex formula, you can determine the maximum height of her dive.

First, you take your values for a and b from your equation, and substitute them into the formula for the x coordinate of the vertex (the vertex formula).
$y=-2 x^{2}+8 x+20$

In this equation, we have:

- $a=-2$
- $b=8$

Using the formula, this gives us:
$x=\frac{-b}{2 a}=\frac{-8}{2(-2)}$

Multiply and divide the values accordingly to provide x equals 2 , so the x-coordinate of your vertex is 2 .
$x=\frac{-8}{-4}=2$

Next, substitute 2 into your original equation for x to find the y-value of the vertex.
$y=-2 x^{2}+8 x+20$
$y=-2(2)^{2}+8(2)+20$

Simplify with your exponent, then multiply and add, according to the order of operations.
$y=-2(4)+8(2)+20$
$y=-8+16+20$
$y=28$

The y-coordinate of your vertex is 28 , and you can see that your vertex is at the point $(2,28)$. This means that 2 seconds after she begins the dive, she reaches her maximum height of 28 feet above the water.

IN CONTEXT

Natasha kicks a soccer ball during a game. How can you determine the maximum height of the ball?

Well, the flight of the ball can be modeled by the equation and graph shown below, where x is the time in seconds after she kicks the ball and y is the height of the ball in feet. Note that the vertex is a
maximum point.

You can start by using your formula for the x-coordinate of the vertex and substituting your values in for b and a.
$y=-16 x^{2}+32 x$

In this equation, we have:

- $a=-16$
- $b=32$

Using the formula, this gives us:
$x=\frac{-b}{2 a}=\frac{-32}{2(-16)}$

Simplify the denominator and divide these values to provide the value of the x-coordinate of the vertex, which is 1.
$x=\frac{-32}{-32}=1$

Next, substitute 1 in for x in your original equation to find the y-coordinate of the vertex.
$y=-16 x^{2}+32 x$
$y=-16(1)^{2}+32(1)$

Simplify your exponent, multiply, and add.

$$
\begin{aligned}
& y=-16(1)+32(1) \\
& y=-16+32 \\
& y=16
\end{aligned}
$$

The y-coordinate of your vertex is 16 . Therefore, your vertex is at the point $(1,16)$. The maximum height of the ball is reached after one second and the maximum height is 16 feet.

SUMMARY

Today you learned that the maximum or minimum point of a parabola is called the vertex, noting that a parabola, the graph of a quadratic equation, will have a maximum point if the graph is pointing down or a minimum point if the graph is pointing up. You also learned that you can find the vertex of a parabola using the vertex formula, by determining the x-coordinate of the point of the vertex. Once you have the x-coordinate of the vertex, you can then substitute this value in for x in the equation to find the y coordinate of the vertex.

Source: This work is adapted from Sophia author Colleen Atakpu.
\beth FORMULAS TO KNOW
x-coordinate of Vertex

$$
x=\frac{-b}{2 a}
$$

