Sophia

VIEW to Simplify Queries

by Sophia

WHAT'S COVERED

This tutorial explores using views to join multiple table data to simplify queries in two parts:
1. Combining Data

2. Complex Query Example

1. Combining Data

Beyond just querying from a single table, you can also use views to combine data from multiple tables. For example, seeing the
support_rep_id may not be extremely useful in an organization unless you know who that value belongs to. Instead, you could include
the name of the support rep, similar to the following:

CREATE VIEW customer_contact

AS

SELECT customer.*, employee.first_name as support_first_name, employee.last_name as support_last_name
FROM customer, employee

WHERE customer.support_rep_id = employee.employee_id;

If we queried the customer_contact view, it would look like the following:

SELECT *
FROM customer_contact;

Quary Rasults

We could further add to the query to include the necessary columns:

SELECT first_name, last_name, support_first_name, support_last_name
FROM customer_contact;
Query Results

Row count: 59

first_name

Luis Gongalves Jane Peacock
Leonie Kohler Steve Johnson
Frangois Tremblay Jane Peacock

If we wanted to write this out using tables, we would have to do the following each time:

SELECT customer.first_name, customer.last_name, employee.first_name as support_first_name, employee.last_name as support_last_name
FROM customer, employee

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

WHERE customer.support_rep_id = employee.employee_id;

2. Complex Query Example

Let's take a look at a more complex query that uses more than 2 tables. So far, when we query the tables for the tracks, we are looking
only at the id values. You may also want to get the artist’s name, album title, and track name at the same time. Creating a view for this
purpose can simplify this process:

CREATE VIEW artist_album_track

AS

SELECT artist.name as artist_name, album.title as album_title, track.name as track_name
FROM artist

INNER JOIN album ON artist.artist_id = album.artist_id

INNER JOIN track ON album.album_id = track.album_id;

Rather than querying the tables to get that list:

SELECT artist.name as artist_name, album.title as album_title, track.name as track_name
FROM artist

INNER JOIN album ON artist.artist_id = album.artist_id

INNER JOIN track ON album.album_id = track.album_id;

We can simply query the view directly, like this:

SELECT *
FROM artist_album_track;

Query Results

Row count: 3503
artist_name
ACDC For | hose About o Rock We Salute You For | hose Abeut lo Rock (We Salute You)
Accopt Ealls te the Wall Ealls te the Wall
Aczepl Restless and Wild Fast A5 a Shark
Aepl Reslless and Wild Restless and Wild
Accept Restless and Wild Princess of the Drawn

If we wanted to add some filters into our SELECT statement, such as only listing the rows that belong to AC/DC, instead of doing this:

SELECT artist.name as artist_name, album.title as album_title, track.name as track_name
FROM artist

INNER JOIN album ON artist.artist_id = album.artist_id

INNER JOIN track ON album.album_id = track.album_id

WHERE artist.name ='AC/DC,

Query Results

Row count: 18

artist_name album_title

AC/DC For Those About To Rock We Salute You For Thase About To Rock (We Salute You)
AC/IDC For Those About To Rock We Salute You Put The Finger On You

AC/DC For Those About To Rock We Salute You Let's Get It Up

ACIDC For Those About To Rock We Salute You Inject The Venom

We would query the view like this:

SELECT *
FROM artist_album_track
WHERE artist_name ='AC/DC';

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

Query Results

Row count: 18

artist_name album_title

AC/DC For Those About To Rock We Salute You For Those About To Rock (We Salute You)
ACIDC For Those About To Rock We Salute You Put The Finger On You

AC/DC For Those About To Rock We Salute You Let's Get It Up

ACIDC For Those About To Rock We Salute You Inject The Venom

The second option greatly simplifies the query without having to join each of the tables together.

Video Transcription

[MUSIC PLAYING] We can also create views to be able to join different tables together based on common data in this case here.
For example, in our scenario, we might want to get the artist's name and the album title as well as the track's name. Without
joining different tables together, we would only be left with the actual IDs within the tables.

So in this case here, we'll simplify things by creating a view that joins the album table, the artist table, and the track table together
based on their primary and foreign keys, and then only display the artist's name, the album title, and the track name.

So in normal cases, if we wanted to query and get those items, we'd have to write this entire query to be able to display all 3,500
rows. In this case here, we're going to go ahead and create this view. So once we've actually created the view, if we wanted to
query from it, we would just simply have this SELECT statement, and from this, view name.

From this view a name, you can add on additional filters that you would typically have in this case as well. There's an additional
track name there. We can add in that WHERE clause utilizing the artist's name, for example, where it's equal to Accept. If we run

this, we'll be able to quickly get the results without having to write the entire statement to join all the different tables together.

[MUSIC PLAYING]

TRY IT

Your turn! Open the SQL tool by clicking on the LAUNCH DATABASE button below. Then enter in one of the examples above and see
how it works. Next, try your own choices for which columns you want the query to provide.

SUMMARY

Views allow us to join multiple table data to simplify queries.

Source: Authored by Vincent Tran

© 2022 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

	VIEW to Simplify Queries
	1. Combining Data
	2. Complex Query Example
	Video Transcription

