
WHERE to Filter Data
by Sophia Tutorial

This tutorial explores using the WHERE clause within a SELECT statement to filter data in the result

set in three parts:

1. Getting Started

2. Filtering Strings

3. Comparison Operators

1. Getting Started

The WHERE clause is used to filter records in a SELECT statement. The WHERE clause is optional, and adds
conditional restrictions to the SELECT statement that will help limit the result set. It only displays the records
that fit the condition listed in the WHERE clause. By using the WHERE clause, you can easily answer questions
like:

Which invoices have a total greater than 14?

Which customers live in Canada?

Which employees report to the General Manager?

For example, if we wanted to find the customer information of the customer_id that was equal to 5, we would

run it as:

SELECT *

FROM customer

WHERE customer_id = 5;

Notice that in the WHERE clause, we define the column (customer_id), the comparison operator (=), and the
value that we wanted to compare it to (5).

If there are no rows that match the criteria in the WHERE clause, you should see a message similar to the
following:

WHAT'S COVERED

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 1

SELECT *

FROM customer

WHERE customer_id = 1000;

2. Filtering Strings

Note that SQL requires single quotes around text values. Numeric values should not be enclosed in quotes.
Here is an example of what would happen if we forgot to include quotes around the text value 'Helena':

SELECT *

FROM customer

WHERE first_name = Helena;

We would get an error message:

This is because the database thinks the text value is a column. This could also present a problem if the text
value is also an actual column. You would not get an error message; however, the results would not be what
wanted either.

To properly use the WHERE clause, you would use the single quotes around the text values:

SELECT *

FROM customer

WHERE first_name = 'Helena';

3. Comparison Operators

We looked at the = operator above, but there are many other operators that can be used in the WHERE
clause. Other comparison operators include:

= means equal to
< means less than
<= means less than or equal to
> means greater than

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 2

>= means greater than or equal to
<> means not equal to

Let us find the invoices that have a total greater than 14.

SELECT *

FROM invoice

WHERE total > 14;

The result set includes 12 rows. If we change the WHERE clause to >= 14, and include all invoices with the
value of 14, the result set goes from 12 rows to 61 rows returned.

SELECT *

FROM invoice

WHERE total >= 14;

When it comes to integer values being compared, there would be no difference between using these two
statements:

SELECT *

FROM invoice

WHERE total >= 15;

or

SELECT *

FROM invoice

WHERE total > 14;

However, if the total contained decimal values, these two statements would not be equivalent. The second

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 3

statement would return rows with a total value between 14 and 15, like 14.5, whereas the first one would not.

Video Transcription

[MUSIC PLAYING] Using the where clause in the select statement, you have the ability to be able to filter

out data within the table itself. Utilizing the query select star from customer, we're returning every single

row within the table itself. However, there's lots of instances in which we don't want to do so. We want to

be able to filter out the details.

So for example, if we're looking for a specific customer ID, we can add in a where. We enter in the

column name and equal to the specific value. In this case here, we'll enter in 5. So this should return just

one row with the customer ID equal to 5, which we'll see here.

Another option as well, is that you can actually select based on different ranges. So for example, if you

want to search for the customer ID with all the different values less than 5, it should return four rows with

customer ID between 1 and 4.

We also have the option to be able to search on text. For example, if we're looking for those that live in

Canada-- we're looking for the country, equal-- one thing to note is that when it comes to text within

Postgres, you have to ensure that you are utilizing single quotes around the text.

If you don't enter in single quotes around the text, what you'll see is an error where it identifies that it's

looking for a column, saying that the column Canada does not exist, being that this is a string literal. So

because of that, we need to enter in single quotes to be able to have it work correctly. Now we have all

eight rows returned. All of the individuals are from Canada.

[MUSIC PLAYING]

 TRY IT

Your turn! Open the SQL tool by clicking on the LAUNCH DATABASE button below. Then enter in one of the

examples above and see how it works. Next, try your own WHERE clauses.

Filtering data using the WHERE clause in SELECT statements can help limit the amount of data being

returned based on the conditions listed. There are multiple comparison operators that can be used to

filter data.

Source: Authored by Vincent Tran

SUMMARY

© 2021 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC. Page 4

	WHERE to Filter Data
	1. Getting Started
	2. Filtering Strings
	3. Comparison Operators
	Video Transcription

