Online College Courses for Credit

3 Tutorials that teach Writing Equivalent Equations
Take your pick:
Writing Equivalent Equations

Writing Equivalent Equations

Author: Sophia Tutorial

This lesson explains what it means for two equations to be equivalent.

See More

Try Our College Algebra Course. For FREE.

Sophia’s self-paced online courses are a great way to save time and money as you earn credits eligible for transfer to many different colleges and universities.*

Begin Free Trial
No credit card required

29 Sophia partners guarantee credit transfer.

312 Institutions have accepted or given pre-approval for credit transfer.

* The American Council on Education's College Credit Recommendation Service (ACE Credit®) has evaluated and recommended college credit for 27 of Sophia’s online courses. Many different colleges and universities consider ACE CREDIT recommendations in determining the applicability to their course and degree programs.


What's Covered

  • Equivalent Equations
  • Determining if Two Equations are Equivalent 

Writing Equivalent Equations

Equivalent Equations

In mathematics, we work with equivalent equations all the time.  Think about the process for solving a multi-step equation.  We might start with something such as 5x + 3 = 23  Using inverse operations, we create a series of equivalent equations in order to find a value for x. 

The equations above are all considered equivalent equations, because they have the same solution.  In each equation, the solution is x = 4

Determining if Two Equations are Equivalent

In order to determine if two equations are equivalent, we will solve each equation, and then compare their solutions.  If their solutions are the same, we can say the equations are equivalent.  If the solutions are not the same, we know that the equations are not equivalent. 

Determine if the equations below are equivalent:

Solve each equation separately:

The solutions to our equations are x = 2 and x = –2.  Since the solutions are not the same, the two equations are not equivalent.